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Abstract

Dual encoders have been used in a variety of ap-
plications like question answering tasks, infor-
mation retrieval/extraction, entity linking and
so on. Dual encoders seem like a robust ar-
chitecture but as with most systems, they have
advantages, disadvantages and shortcomings.
This report attempts to provide a glimpse at the
potential and different applications of dual en-
coders while keeping in mind their pitfalls too.
This report is inspired by Luan et al. (2021)
and their use of dual encoders as first stage
retrievers.

1 Introduction

The dual encoder architecture has been used across
the field of information retrieval. They have been
used as retrievers, (Luan et al., 2021), as re-rankers,
(Menon et al., 2022), for entity linking, (Gillick
et al., 2019), (Wu et al., 2019), for question-
answering tasks (Dong et al., 2022), (Wang et al.,
2022) and so on. In the last couple of years there
has been an increasing body of research in lever-
aging the advantages such as the ease of working
with large-scale information retrieval (Luan et al.,
2021) as well as the disadvantages like the limita-
tion of fixed length encodings in retrieving large
documents (Luan et al., 2021). This report attempts
to provide an introduction to the potential and ap-
plications of dual encoders.

2 What are Dual Encoders?

Though the idea and concept of an entity similar
to dual encoders has existed for a couple of years
under the term Siamese networks, Bromley et al.
(1993), the term ’Dual Encoders’ was first formally
defined by Gillick et al. (2018).

Siamese networks are models where two entities
are encoded by two copies of the same network. A
more elaborate description of Siamese Networks
is provided by Chicco (2020) where they describe

the network as a combination of two identical feed
forward neural networks which each generate an
output that is compared using a similarity metric
like cosine similarity to predict whether the two en-
tities are similar or not. The architecture provided
in figure 1 is referenced from Chicco (2020).

It shows two feed forward neural networks,
whose inputs are two entities that are to be com-
pared. The similarity measure most used is cosine
similarity.

Siamese networks have been generally applied
in situations where a comparison has to be made,
for example, in image analysis to recognise finger-
prints from images by Baldi and Chauvin 1993, for
face verification by Chopra et al. and so on.

Dual encoders, as defined by Gillick et al. (2018)
are models in which a pair of items are encoded
in a shared space. During training, candidate
items are encoded by the candidate encoder to a d-
dimensional(potentially lower dimensional space)
and at inference, a query encoder encodes the query
to a vector space after which candidate items are
determined using similarity metrics or nearest dis-
tance measures like approximate nearest neighbor
search.

According to Dong et al. (2022), dual encoders
are preferred due to the fact that the embedding
index of the encoders can grow dynamically with
new information which is not the case with gen-
erative networks which need to be retrained with
new data. Additionally, this makes them easy to
productionize.

Dual encoders can have different types of ar-
chitectures, as mentioned in Dong et al. (2022).
They can be broadly categorised under Siamese
Dual Encoders(SDE) and Asymmetric Dual En-
coders(ADE).

In asymmetric dual encoders, two separate en-
coders are used to encode the two entities that
are to be compared. These encoders may share
some or no parameters. In the Dense Passage Re-



Figure 1: Chicco (2020)

treiver(DPR) model introduced by Karpukhin et al.
(2020), given a collection of passages, the aim is
to retrieve top-k passages for a given query, which
is a standard open domain question answering sit-
uation. At inference time, a different encoder is
used to encode the query to a d-dimensional vector
space, after which the top-k passages similar to the
query are retrieved.

Similarly, Lee et al. (2020), also tackles the prob-
lem of open domain question answering, in terms
of phrase retrieval. The architecture here too in-
cludes a separate phrase encoder and question en-
coder.

On the other hand, in siamese dual encoders, the
parameters are shared between the two encoders.
An example would be ST5 model introduced by
Ni et al. (2021b) where the architecture consists
of two shared weight transformer modules that are
used to encode the inputs.

The prowess of dual encoders are not just in
retrieval, but can also be seen in ranking. Cross-
attention models, which learn a joint embedding for
the query and the document do perform better for
ranking but dual encoder models can be improved
with a sufficiently large encoder size as is stated in
Menon et al. (2022). The paper also shows empiri-
cally that the gap between the performance of dual
encoders and cross-attention models is due to dual
encoders over fitting to the training set.

Figure 2: Vempala (2004)

2.1 Random Projection

Random projection, Vempala (2004) is a topic of
interest in this report due to the fact that dual en-
coders compress the input to a lower dimensional
space, for which, random projection can be used as
is done in Luan et al. (2021).

The Johnson-Lindenstrauss lemma, Johnson
(1984), Pyrcz (2019) state that points in a high-
dimensional space can be linearly embedded in a
space of lower dimensionality in such a way that
distances between the points are preserved.

A consequence of the lemma is that projecting a
space to a lower dimension does not depend on the
initial number of parameters, it only depends on the
number of data points, the original dimensionality
and the acceptable error limit.

Hence, a random matrix which is of shape m x p
where m is the original number of features and p is



Figure 3: Reimers and Gurevych (2019)

the lower dimension by the original is multiplied
by the n x m feature matrix and a scalar to give a
feature matrix of lower dimensionality.

Yn×p =
1
√
p
Xn×mRm×p (1)

The scaling factor above (
1
√
p
) is chosen to ac-

count for the impact on pairwise distances of work-
ing in the lower dimensional space.

The random matrix can be filled with either
Gaussian entries or Rademacher entries. The
values for the former are drawn from the Gaussian
distribution, Wikipedia (2023a) while for the latter,
the values are drawn from the Rademacher distri-
bution, Wikipedia (2023b). This process is known
as random projection, loosely defined as the pro-
cess of mapping high-dimensional matrices to a
lower-dimension by a random matrix.

2.2 Cross-encoders

A succinct definition is provided by Reimers and
Gurevych (2019). In a cross-encoder, the two enti-
ties to be compared are passed simultaneously to
the transformer network. An output value between
0 and 1 to indicates the similarity within the pair.
No sentence embedding is produced in this case.

In the literature, bi-encoders are mentioned now
and again. It is unclear whether bi-encoders are the
same as dual encoders given that the architecture
seems similar too. Assuming they are, the differ-
ence between a bi-encoder/dual-encoder and a
cross-encoder is that, for bi-encoders, the input is
passed independently to the transformer. Hence,
two sentence embeddings are produced. These sen-
tence embeddings are then compared using cosine
similarity.

Figure 4: Luan et al. (2021)

3 Dual Encoders vs Sparse Retrievers

The traditional model of information retrieval in-
volved spare retrievers that encoded the document
into a sparse vector whose dimensions were the
same as the length of the vocabulary, v of the cor-
pus. The query vector would be mapped to the
same dimension and models like TF-IDF would be
used to choose the documents similar to the query.
In contrast, dual encoders encode the documents to
a dense representation k, where k ≪ v

At first glance it seems that dual encoders should
perform better than the sparse methods since they
encode context but this is not the case as demon-
strated by Luan et al. (2021). Figure 4 shows the
recall@1 for a passage retrieval task. DE-BERT
is a BERT based dual encoder, and the rest of the
architectures are appropriately named. BM25 per-
forms better than BERT and even the dual encoder
when it comes to longer passages.

Sparse retrieval models perform better than dual
encoders when it comes to precise term overlap.
The capability of a model to detect precise term
overlap has been termed as fidelity by Luan et al.
(2021) and this term is said to be a tractable proxy
of capacity. The paper further conducts a theoreti-
cal as well as an empirical investigation to confirm
that there are some limitations in the capacity of
of fixed length encodings to support retrieval of
longer documents.

The theoretical investigation uses random projec-
tion, Vempala (2004) to compress the documents to
a denser representation. Rademacher embeddings
are used to fill the random matrix which raises the
question as to why Gaussian embeddings weren’t
used exclusively since using Rademacher embed-
dings seems to be uncommon in the literature.

An interesting lemma provided in the paper up-
per bounds the pairwise error probability for a
given k. The corollary provides a convenient view
on the situation.



Figure 5: Gillick et al. (2019)

Figure 6: Luan et al. (2021)

Given vectors q(query), d1(document 1),
d2(document 2), such that the normalized mar-
gin (geometrically, how much better is a document
compared to its competitors), ϵ, is greater than
zero. If A is a random matrix with Gaussian or

Rademacher entries, such that if k > 12ϵ−2 ln(
4

β
),

then

P (⟨Aq,Ad1⟩ ≤ ⟨Aq,Ad2⟩) ≤ β (2)

where ⟨Aq,Adi⟩ is the cosine similarity be-
tween q and di and β is the error probability that
⟨Aq,Ad1⟩ ≤ ⟨Aq,Ad2⟩

Another interesting result is the conclusion that,
the probability of returning d1, which is the doc-
ument that is the most similar to a query among
all given documents, is bounded by a function of
the embedding size(after random projection) k and
normalized margin.

A consequence of this result is that, to achieve
recall@1, for a given ( q, d1, D ) triple, where D is
the total set of documents, with probability ≥ 1−β,
the value of k should be set to

k ≥ 2

ϵ2

2
− ϵ3

3

ln
4(|D| − r0 + 1)

β
(3)

where ϵ is the smallest normalized margin.

3.1 Compare normalized margins and
document length

An empirical investigation was conducted using
TF-IDF and BM-25 models. The TREC-CAR Di-
etz and Craswell dataset is separated by document
length and for each query the normalized margins
between the document with the best score and ev-
ery other document in its group is calculated. The
focus is on the 10th, 100th and 1000th smallest
normalised margins. The results are presented in
figure 6.

The figure shows that normalized margins
decrease, as the document length increases.

Luan et al. (2021) also introduces a model named
multi-vector encoding that can combine the dense
representation feature of dual encoders which help
computing semantic similarity with the ability to
maintain fidelity with respect to sparse vector rep-
resentation models. The introduction of this model
was deemed necessary by the authors since sparse
models are inadequate for detecting contexts and



attentional architectures are impractical for large
scale retrieval.

Overall, theoretical and empirical techniques
were used to characterize the fidelity of fixed-length
dual encoders, focusing on the role of document
length. Based on these observations, hybrid models
were proposed that yield strong performance while
maintaining scalability.

The capability of dual encoders is not limited
due to the fixed length encoding of the vectors.
Ni et al. (2021a) suggest that the reason that dual
encoders do not generalize to other domains for
retrieval tasks is because of the bottleneck of the
embedding size which can be fixed by increasing
the size of the dual encoder model. This idea is
followed with an empirical study that compares the
Generalizable T5-based dense Retrievers (GTR)
model introduced by the paper against the BEIR
zero-shot retrieval benchmark, especially for out-
of-domain generalization.

4 Dual Encoders for Entity Linking

The task of entity resolution consists of matching
entities from a knowledge base to a "mention",
which are certain spans of text in a document. Most
architectures for solving this task involve a two-
step approach. The first step retrieves candidate
entities and the second step selects the most likely
candidate.

Each entity would have "aliases" in the knowl-
edge base which are just other possible ways of
referring to the entity. However, these entity tables
are not very efficient since they cannot store all
aliases for every entity. At a certain point, there will
be "cut-offs" which would leave out some aliases
for an entity. Also, the problem of ambiguity re-
mains. For a given mention, there can be uncer-
tainty regarding the appropriate entity. The context
of the mention gives a clue as to what the category
of an ambiguous entity could be. Furthermore,
for low-resource domains, it would be difficult to
find/construct alias tables.

A better approach would be to map both the
entity and mentions to a common vector space.
This approach has been explored by Gillick et al.
(2019). Figure 5 shows the architecture of a dual
encoder model, where the mention side encoder
combines information about the mention span and
mention context. The entity side encoder combines
the entity related information together too.

The architecture follows the typical dual encoder

model where two networks are used to separately
encode the entity and mentions. The authors men-
tion that there is no interaction between the two
networks so it can be assumed that this system
follows an asymmetric dual encoder architecture.

The compound encoder mentioned in the archi-
tecture adds useful sub-structure to each network.
The architecture shows a layer which concatenates
encoder inputs and two feed-forward layers. The
text encoder is used for text input while the sparse
encoder is used for sparse ID input and all text en-
coders share a common set of embeddings. More
information about the architecture can be found in
section 4.1 of Gillick et al. (2019)

Cosine similarity is used to calculate similarity
between the two representations. The retrieval re-
sults presented show a very high recall@100 for
the model introduced by the paper(DEER) in com-
parison to the other models like BM25.

An alternative approach to the one suggested in
Gillick et al. (2019) would be to use the retrieval
space only to generate candidate entities and then
re-rank them by using a cross-attention encoder
over the target mention and each of the candidate
entities. This method was suggested by Agarwal
and Bikel (2020).

The reason provided by the authors of Agarwal
and Bikel (2020) for using cross-attentional archi-
tectures to re-rank is simple. The dual encoder
model is good for learning representations for both
the entity and the mention in a vector space. How-
ever, to disambiguate between entities, further con-
text/information on the entity and mention side is
needed.

An example given in the paper illustrates this
point perfectly. Consider that the mention in the
text is Asia Cup and the candidate entities are 2018
Asia Cup and 2016 Asia Cup. Now, to disam-
biguate between these two entities, looking at the
contexts of the mention and the entity would help.
If the mention has a year in its context, it would be
easy to identify the entity. However, if the year is
not present, but the location is present, given that
there is information on the location of the 2018
Asia Cup and 2016 Asia Cup, this situation too
can be solved. A cross-attention model allows for
the use of such detailed information/features about
the mention and the entity. Paraphrasing from the
paper, ""Cross-attention gives the opportunity to
choose relevant context selectively depending in
the specific mention and entity in question and the



Figure 7: Agarwal and Bikel (2020)

Figure 8: Dong et al. (2022)

available features.
The candidate generator follows the same archi-

tecture as that of the dual encoder model in Gillick
et al. (2019). The entity encoder encodes the en-
tities, the mention encoder encodes the mentions
and the nearest neighbors are selected using cosine
similarity. The 100 retrieved entities are then used
for ranking.

The ranking problem is treated as a binary clas-
sification task. Using BERT as a cross-attention
encoder, a representation of each mention-entity
pair is classified as a true link or not. The final
entity is chosen based on the classification prob-
abilities, the entity with the highest probability is
chosen as final linked entity. This architecture is
pictorially represented in figure 7

Interestingly, Wu et al. (2019) propose some-
thing very similar. One of the differences in the
approach is that for the retrieval step, Wu et al.
(2019) use approximate nearest neighbors search
while Agarwal and Bikel (2020) use cosine similar-
ity. Apart from that, most of the architecture seems
very similar as both use a dual-encoder for first
stage retrieval and a cross-encoder for re-ranking.

5 Dual Encoders for Question Answering

One of the most efficient uses of the dual en-
coder architecture is for question answering tasks.
Various models of dual encoders have different
strengths and weaknesses when it come to this task
as is demonstrated by Dong et al. (2022).

Five variants of dual encoders are tested which
are, Siamese Dual-Encoder(SDE), Asymmetric
Dual-Encoder (ADE), ADE with shared token em-
bedder (ADE-STE), ADE with frozen token embed-
der (ADE-FTE) and ADE with shared projection
layer (ADE-SPL). The first two variants have been
described in section 2. The remaining three are vari-
ants of ADE such that certain parts of the networks
are shared. Figure 8 encapsulates the differences in
the architectures of these five variants. Parameter
sharing in different parts of the dual encoder archi-
tecture produce different variants. The orange and
green components in Figure 8 are distinctly param-
eterised for question and answer encoder network
respectively. The blue component is shared. Grey
components are frozen.

The results of the experiments are interesting.
SDE tend to perform better in comparison to the



Figure 9: Ram et al. (2022)

ADE. The authors of Dong et al. (2022) speculate
that the reason for this is the fact that different
encoders used for question and answers map them
to different parameter spaces that are not aligned.

Since the SDE share parameters, the embeddings
for the question and answers are forced to be in
the same vector space. This assumption is con-
firmed by conducting an analysis on the embed-
dings where the question and answer embeddings
are generated, following which t-SNE, Van der
Maaten and Hinton (2008) is used to project and
cluster the embeddings to 2-dimensional space.

To improve the performance of the ADE, the
other variants of dual encoders are constructed.
Freezing and sharing token embedders bring mini-
mal improvements for ADE’s which suggest that
token embedders might not be the best way to fix
the gap between SDE and ADE. Another method
used is by sharing projection layers which accord-
ing to experiments performed by Dong et al. (2022)
do improve the performance of asymmetric dual
encoders.

6 How do Dual Encoders represent text?

Dual encoders perform surprisingly well for many
tasks and surprisingly poor for others. The rea-
sons for its success or failure are not very clear.
To shed light on this, Ram et al. (2022) attempt to
interpret the representations produced by the dual
encoder. This can be done by projecting the repre-
sentations to the vocabulary space by passing them

to a Masked Language Model(MLM) head. These
projections are found to be highly interpretable by
humans.

The Query Encoder EncQ encodes the query,
q to obtain its representation, eq. Similarly, the
Passage Encoder Encp, encodes the passage p to
obtain its representation ep. The MLM head is then
applied to obtain the vocabulary projection,

Q = MLM −HEAD ( eq )
P = MLM −HEAD ( ep )

The MLM-HEAD can be defined as a function
that takes h ∈ Rd as input and returns a probability
distribution P over the vocabulary V such that,

MLM −HEAD(h)[i] =
exp(vi

⊤g(h))∑
j∈V exp(vi

⊤g(h))
(4)

g : Rd → Rd is a function that adds non-
linearity and vi ∈ Rd is the static embedding of the
ith item in V .

Figure 9 demonstrates the method. Surprisingly,
the query projections seem to contain words that
imply that the model had implicitly performed
query expansion, Rocchio Jr (1971) by "expand-
ing" the terms the query includes which would
help in finding a relevant passage. Similarly, the
passage projections seem to almost anticipate the
queries that could be asked for the passage. This
is showcased in the first panel of figure 9. For the
successful case, Q even includes the answer(nine)



to the query(How many judges currently serve on
the Supreme Court?).

This exercise also sheds light on why/how these
models can fail. Dense retrievers tend to ignore
some of the words in the passage; for example, in
the failure case in figure 9, the word Michael is
ranked low even when it seems to be an important
token. The authors refer to this as token amnesia.
In an attempt to overcome this, the authors suggest
complimenting the dense representations with lexi-
cal information. The paper demonstrates that this
method improves the performance of dual encoders
on various retrieval tasks. Hence, the method of
vocabulary projection can be used to ’detect’ prob-
lems in how a dual encoder encodes the text, which
can be used to improve the performance of the
encoder on various tasks.

7 Conclusion

This report is an attempt to shed light on the dif-
ferent ways dual encoders can be used in the field
of information retrieval. Various variants of the
dual encoder architectures and their positives as
well as negatives were presented. A short descrip-
tion of random projection is presented and the fact
that projecting a dense matrix to a lower dimension
does not depend on the original dimension is high-
lighted. Dual encoders are compared against sparse
retrievers and it is mentioned that dual encoders
are not as efficient in encoding longer documents
compared to sparse models. Dual encoders can be
used for entity linking tasks, various papers that
use the architecture are summarised and presented.
Similarly, the use of dual encoders for question
answering tasks is also presented. A method of
’fixing’ the drawback of the dual encoder archi-
tecture is highlighted which prompts further work
using this architecture.
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